On Model Reduction of Periodic Descriptor Systems Exploiting the Generalized Inverses of Periodic Matrix Pairs

نویسندگان

  • Peter Benner
  • Mohammad-Sahadet Hossain
چکیده

In this paper, we establish a model reduction technique for periodic discrete-time descriptor systems exploiting the generalized inverses of the periodic singular matrix pairs associated with the systems. We compute the generalized inverses of periodic singular matrix pairs to implement a structure preserving iterative method for the solution of the periodic projected Lyapunov equations that arise in analysis and modelling of periodic discrete-time descriptor systems. We extend the Smith method to solve the large scale projected periodic discrete-time algebraic Lyapunov equations in lifted form. A low-rank version of this method is also presented, which avoids the explicit lifted formulation and works directly with the period matrix coefficients. Moreover, we consider an application of the Lyapunov solvers in balanced truncation model reduction of periodic discrete-time descriptor systems. Numerical results are given to illustrate the efficiency and accuracy of the proposed methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Model Reduction for Periodic Descriptor Systems Using Balanced Truncation

Linear periodic descriptor systems represent a broad class of time evolutionary processes in micro-electronics and circuit simulation in particular. In this paper we consider discrete-time linear periodic descriptor systems and study the concepts of periodic reachability and observability of the systems based on earlier ideas of Chu et al. [1]. We define reachability and observability Gramians ...

متن کامل

On computing minimal realizations of periodic descriptor systems

We propose computationally efficient and numerically reliable algorithms to compute minimal realizations of periodic descriptor systems. The main computational tool employed for the structural analysis of periodic descriptor systems (i.e., reachability and observability) is the orthogonal reduction of periodic matrix pairs to Kronecker-like forms. Specializations of a general reduction algorith...

متن کامل

Low-rank iterative methods of periodic projected Lyapunov equations and their application in model reduction of periodic descriptor systems

Low-rank iterative methods of periodic projected Lyapunov equations and their application in model reduction of periodic descriptor systems Low-rank iterative methods of periodic projected Lyapunov equations and their application in model reduction of periodic descriptor systems Abstract We discuss the numerical solution of large-scale sparse projected discrete-time periodic Lyapunov equations ...

متن کامل

On computing generalized inverse systems using matrix pencil methods

We address the numerically reliable computation of generalized inverses of rational matrices in descriptor state space representation. We put a particular emphasis on two classes of inverses: the week generalized inverse and the MoorePenrose pseudoinverse. By combining the underlying computational techniques, other types of inverses of rational matrices can be computed as well. The main computa...

متن کامل

Computing Generalized Inverse Systems Using Matrix Pencil Methods

We address the numerically reliable computation of generalized inverses of rational matrices in descriptor state-space representation. We put particular emphasis on two classes of inverses: the weak generalized inverse and the MoorePenrose pseudoinverse. By combining the underlying computational techniques, other types of inverses of rational matrices can be computed as well. The main computati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015